Perform following operations using Pandas
Filling NaN with String
Program
import numpy as np
import pandas as pd
#Creating DataFrame
cars = pd.DataFrame({'name':['benz','bmw','tata'], 'showroomprice':[12.5,np.nan,10.6], 'onroadprice':[np.nan,29.6,14.8]})
print("Cars Information with NaN:")
print(cars)
#Replacing NaN with empty string
cars.fillna('',inplace=True)
print("Cars Information after replacing NaN with empty string:")
print(cars)
import pandas as pd
#Creating DataFrame
cars = pd.DataFrame({'name':['benz','bmw','tata'], 'showroomprice':[12.5,np.nan,10.6], 'onroadprice':[np.nan,29.6,14.8]})
print("Cars Information with NaN:")
print(cars)
#Replacing NaN with empty string
cars.fillna('',inplace=True)
print("Cars Information after replacing NaN with empty string:")
print(cars)
Output
Cars Information with NaN:
name showroomprice onroadprice
0 benz 12.5 NaN
1 bmw NaN 29.6
2 tata 10.6 14.8
Cars Information after replacing NaN with empty string:
name showroomprice onroadprice
0 benz 12.5
1 bmw 29.6
2 tata 10.6 14.8
name showroomprice onroadprice
0 benz 12.5 NaN
1 bmw NaN 29.6
2 tata 10.6 14.8
Cars Information after replacing NaN with empty string:
name showroomprice onroadprice
0 benz 12.5
1 bmw 29.6
2 tata 10.6 14.8
Sorting based on column values
Program
import pandas as pd
#Creating DataFrame
cars = pd.DataFrame({'name':['benz','bmw','tata'], 'showroomprice':[12.5,24.6,10.6], 'onroadprice':[16.8,29.6,14.8]})
print("Cars Information:")
print(cars)
#Sorting column values
cars.sort_values(by='showroomprice',inplace=True)
print("After sorting cars by show room price, Cars Information:")
print(cars)
#Creating DataFrame
cars = pd.DataFrame({'name':['benz','bmw','tata'], 'showroomprice':[12.5,24.6,10.6], 'onroadprice':[16.8,29.6,14.8]})
print("Cars Information:")
print(cars)
#Sorting column values
cars.sort_values(by='showroomprice',inplace=True)
print("After sorting cars by show room price, Cars Information:")
print(cars)
Output
Cars Information:
name showroomprice onroadprice
0 benz 12.5 16.8
1 bmw 24.6 29.6
2 tata 10.6 14.8
After sorting cars by show room price, Cars Information:
name showroomprice onroadprice
2 tata 10.6 14.8
0 benz 12.5 16.8
1 bmw 24.6 29.6
name showroomprice onroadprice
0 benz 12.5 16.8
1 bmw 24.6 29.6
2 tata 10.6 14.8
After sorting cars by show room price, Cars Information:
name showroomprice onroadprice
2 tata 10.6 14.8
0 benz 12.5 16.8
1 bmw 24.6 29.6
groupby()
Program
import pandas as pd
#Creating DataFrame
cars = pd.DataFrame({'name':['tata','benz','bmw','tata'], 'showroomprice':[6.32,12.5,24.6,10.6], 'onroadprice':[8.02,16.8,29.6,14.8]})
print("Cars Information:")
print(cars)
#Cars Information Grouping by name
grouped = cars.groupby(by="name").sum()
print("After grouping cars companies by name, Cars Information:")
print(grouped)
#Creating DataFrame
cars = pd.DataFrame({'name':['tata','benz','bmw','tata'], 'showroomprice':[6.32,12.5,24.6,10.6], 'onroadprice':[8.02,16.8,29.6,14.8]})
print("Cars Information:")
print(cars)
#Cars Information Grouping by name
grouped = cars.groupby(by="name").sum()
print("After grouping cars companies by name, Cars Information:")
print(grouped)
Output
Cars Information:
name showroomprice onroadprice
0 tata 6.32 8.02
1 benz 12.50 16.80
2 bmw 24.60 29.60
3 tata 10.60 14.80
After grouping cars companies by name, Cars Information:
showroomprice onroadprice
name
benz 12.50 16.80
bmw 24.60 29.60
tata 16.92 22.82
name showroomprice onroadprice
0 tata 6.32 8.02
1 benz 12.50 16.80
2 bmw 24.60 29.60
3 tata 10.60 14.80
After grouping cars companies by name, Cars Information:
showroomprice onroadprice
name
benz 12.50 16.80
bmw 24.60 29.60
tata 16.92 22.82